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Deep Neural Network for Multi-Pitch Estimation 

Using Weighted Cross Entropy Loss 

 

Abstract— Multi-Pitch Estimation, the estimation of multiple 

overlapping or polyphonic harmonic fundamental frequencies, 

has a wide range of applications, including automatic music 

transcription, power systems, and radar signal processing. 

Multiple fundamental frequencies represent a challenge due to the 

added complexity of the overlapping signals. This paper presents 

a Deep Learning approach to estimating multiple fundamental 

frequencies. The network is trained in a supervised fashion to 

generate a pseudospectrum representing the fundamental 

frequencies. Training data is represented by a sparse binary 

vector the size of the pseudospectrum, indicating the location of 

fundamental frequencies. A weighted binary cross-entropy loss 

function is used to correct for class imbalance caused by the 

sparsity of the signal space relative to the full spectrum. We show 

comparable performance to existing techniques while requiring 

fewer operations and samples due to a simpler frequency-domain-

only architecture. 

Keywords— Frequency Estimation, Machine Learning, 

Harmonic Analysis 

I. INTRODUCTION 

Harmonics are signals which are multiples of a fundamental 
frequency. Depending on the source of the signal, a harmonic 
signal can have a finite number of peaks, such as in Helicopter 
Rotor Modulation [6]. The equation for a harmonic signal with 
N harmonics and M fundamental frequencies is shown below. 

 𝑥(𝑡) =  ∑ ∑ cos (2 ∗ 𝑝𝑖 ∗ 𝑓𝑖𝑡 𝑛)𝑁
𝑛=1

𝑀
𝑖=1  () 

Harmonic signals come from a variety of sources, such as 
non-linearities in electronics and music. Differing from music 
signal transcription applications, we strive to estimate 
fundamental frequencies accurately and minimize false alarms 
rather than maximize a perception-based metric such as pitch 
salience. Conventional methods are subject to errors such as 
frequency halving/doubling [2] or rely on domain-specific 
knowledge of the signal [5]. Other methods relying on 
detections work well for high signal-to-noise ratio but perform 
poorly when detections are missed and rely on heuristics to 
discern between higher harmonics or identify spurious signals 
[3]. To mitigate these, we apply a machine learning algorithm to 
determine the fundamental frequencies. 

The neural network architecture chosen is based on 
processing only the frequency domain signal with a single FFT. 
Our approach differs from recent work uses versions of the 

constant Q transform (CQT) that generate either a two-
dimensional time-frequency representation of the signal [5] or 
three-dimensional time-frequency-octave representation [4]. 
This has a couple of advantages in applying Deep Learning to 
multi-pitch estimation. Including the time component means 
that frequency resolution and coherent processing gain are lost 
compared to a frequency-only representation of the same 
number of samples. This also eases processing, as the neural 
network can be constructed using fewer feature channels, and 
fewer samples must be pre-processed. 

II. APPROACH 

Time domain samples of a multi-pitch signal are converted 

to the frequency domain using the Fast Fourier Transform. The 

resulting FFT spectrum of the signal is converted to the log 

frequency domain through the constant Q transform [1].  

On the log-frequency scale, harmonics are equally spaced 

regardless of fundamental frequency. A Deep Neural Network 

(DNN) Architecture using convolutional blocks is used for 

model, based on the work of Bittner, McFee, and Bello [5].  
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Fig. 1. Deep Network Architecture and preprocessing blocks including 

Convolutional Neural Network blocks with various number of layers and kernal 

sizes 

Following pre-processing using FFT and Constant Q 

Transform, the signal is passed through this Deep Neural 

Network. This network uses a sequence of convolutional blocks 
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with varying number of layers and kernel size. A sigmoid 

function scales the signal to a range (0,1) at the output. 

The network treats comparison between the input and 

output as a binary classification problem, where the classes are 

either true for the presence of a signal at the frequency bin or 

false in bins where there is no signal. With ordinary binary 

cross-entropy, the reward from true negatives overwhelms the 

reward for true positives, causing the network to estimate low 

power in all frequency bins regardless of the input signal. In our 

approach, objective is determined by comparing the output 

pseudospectrum with the binary frequency label using the 

weighted binary cross-entropy loss function in Equation 2 with 

prediction 𝑝̂, label 𝑝, and weights 𝛽1, 𝛽2 [7].  

𝑊𝐵𝐶𝐸(𝑝, 𝑝̂) =  −𝛽1 𝑝 log(𝑝̂) − 𝛽2(1 − 𝑝) log (1 − p̂)  () 

The weight is treated as a hyperparameter that increases the 

impact of true detection on the reward. The balance between the 

reward for true positives and true negatives is adjusted by 

changing this value. Because true positives represent the 

minority class in the sparse signal vector, ratio of the weight 
𝛽1

𝛽2
> 1  is used. We scale the weight based on the expected 

number of signals and the number of frequency bins.  

III. TRAINING DATA 

A common problem in training supervised machine learning 

models for multi-pitch estimation is the lack of accurately 

labeled training data. For this work, training and testing data is 

generated through simulation. A pseudorandom number 

generator is used to select signal and noise parameters from a 

range of realistic inputs. Signal parameters chosen are the 

fundamental frequencies, number of harmonics fundamental 

frequency, and the signal to noise ratio of the harmonics. The 

range of parameters used in training and testing is shown in the 

figure below. 

TABLE I.  SIMULATED SIGNAL PARAMETERS RANGE 

Parameter Minimum Maximum 

Number of Fundamental 

Frequencies 
1 6 

Fundamental Frequency 30Hz 400Hz 

Number of Harmonics of each F0 5 20 

Signal to Noise Ratio 10dB 40dB 

 

This range of parameters is selected to represent real-world 

signal parameters accurately.  

IV. RESULTS 

The figures below illustrate the CQT of a simulated signal 

and an example output of the network with this sample input. 

In Figure 2, the density of a signal with five harmonics is 

shown.  

 

Fig. 2. Constant Q Transform of an input multi-pitch signal 

This signal would typically represent a significant challenge 

for estimators, especially with the minimal spacing between 

some adjacent frequencies. 

 

Fig. 3. Truth label boolean mask of an example input signal 

The generated signal truth is a vector of Boolean values for 

each frequency bin, where bins with a signal present are true. 

The Deep Neural Network output is shown below. 

 

 

Fig. 4. Deep Neural Network Pseudospectrum of an example signal 



This example figure shows that the network can generate a 

pseudospectrum that accurately represents the input 

fundamental frequencies.  

The receiver operator characteristic was constructed to 

evaluate model performance across a range of conditions. For a 

single trained model, we vary the threshold for detection from 

0 to 1 against the model and compare detected frequencies to 

truth. True detection is evaluated based on whether detected 

frequencies were found within 1Hz of the truth. False-positive 

peaks are other peaks. Performance was evaluated by 

computing the mean performance of the model output over 

batches of simulated data for each of the steps in the detector.  

 

Fig. 5. Receiver-Operator Characteristic  

With a probability of false alarm set to 0.05, the model can 

achieve a probability of detection of around 35 percent. This 

result is comparable to the accuracy of the single-task model 

trained in reference [5] in a significantly smaller number of 

operations due to the frequency-only representation of the 

signal. The receiver operator characteristic is biased at higher 

false alarm rates by the unequal distributions between the 

probability of false alarm and the probability of detection.  

V. CONCLUSIONS AND FUTURE WORK 

Deep Neural networks show promise as a technique to 

estimate multiple fundamental frequencies. This paper also 

demonstrates the ability of a DNN to generate a 

pseudospectrum for frequency estimate. Weighted binary 

cross-entropy loss was found to be essential to the generation 

of this pseudospectrum, as, without it, the reward from correctly 

predicting empty frequency bins overshadows the reward for 

correctly estimating frequencies. However, there is still room 

for improvement in this technique, as the weighting for negative 

bins applies to both false negatives and true negatives, 

increasing the probability of false alarm. Weighted binary 

cross-entropy could be improved by separate weighting for true 

negatives and false positives. In addition, the current 

architecture makes use of a relatively small kernel size in the 

first layer, which may impact the networks' ability to predict 

harmonics. Other techniques for fundamental frequency 

estimation would consider more frequency bins at a time [2]. 

This technique or a version of it could potentially be used to 

directly replace traditional digital signal processing or super-

resolution techniques in a variety of applications such as angle 

of arrival estimation or multi-path error mitigation in radar 

signal processing.  
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